연세의대 연구진, 입원환자 대상 데이터 검증 신경과 전문의 예측도 75%보다 월등한 결과
  • ▲ ⓒ연세의료원
    ▲ ⓒ연세의료원
    뇌수막염과 뇌염의 원인을 조기에 분류할 수 있는 인공지능 모델이 개발됐다. 

    연세대 의대 의생명시스템정보학교실 박유랑 교수와 최보규 강사, 세브란스병원 신경과 김경민 교수 연구팀은 뇌수막염과 뇌염 환자들의 초기 데이터를 활용해 원인 진단 정확도 93% 이상을 자랑하는 인공지능 모델을 개발했다고 27일 밝혔다. 

    뇌수막염과 뇌염은 중추 신경계에 염증이 발생하는 질환이다. 발생 원인이 매우 다양하고 원인에 따라 증상과 예후도 다양하다. 

    이 중 원인이 세균성이나 결핵성이라면 사망률도 높고 치료 후에도 인지기능 장애, 뇌혈관 장애, 경련 발작 반복 등 후유증이 생길 수 있기 때문에 빠른 원인 진단과 치료가 중요하다. 

    이에 연구팀은 인공지능 기반의 뇌수막염 및 뇌염 원인 분류 모델을 개발하고 그 효과를 분석했다.

    2006년부터 2021년까지 세브란스병원에 내원한 뇌수막염과 뇌염 환자 283명의 입원 후 24시간 데이터를 기반으로 자가면역성, 세균성, 결핵성, 바이러스성 네 가지 원인 중 어느 원인에 해당하는지 진단하는 AI 분류 모델을 개발했다. 

    AI 분류 모델의 진단 인자로 혈압, 심박수 등 활력 징후에 관한 데이터와 뇌 CT, 흉부 X선, 혈액 및 뇌척수액 검사 등 총 77개의 데이터가 사용됐다. 

    이후 구축한 모델의 효과를 세브란스병원의 283명 환자와 2008년부터 2022년까지 강남세브란스병원에 내원한 뇌수막염, 뇌염 환자 220명을 대상으로 검증했다. 

    AI 모델의 예측 정확도(AUROC)는 세브란스병원 환자를 대상으로 0.94(94%), 강남세브란스병원은 0.92(92%)에 달했다. 통상적으로 1에 가까울수록 성능이 뛰어나며 0.8 이상인 경우 고성능 모델로 평가된다. 

    연구팀은 예측 모델의 임상 적용 가능성을 확인하기 위해 원인이 확인되지 않은 뇌수막염과 뇌염 환자 1197명을 대상으로도 정확도 검증을 진행했다. 그 결과 실제 임상에서의 예측과 진단이 93% 이상 일치하는 것으로 나타났다. 

    또한 100명의 환자를 별도로 선별해 AI 모델과 타과 전문의, 신경과 전문의의 원인 진단 결과를 비교했다. 

    AI 원인 분류 모델의 예측 정확도는 93%로 타과 전문의 예측 정확도 34%, 신경과 전문의 75%와 비교해 높은 정확성을 보이는 것을 확인했다. 

    박유랑 교수는 "이번 연구를 통해 뇌염과 뇌수막염의 다양한 원인을 성공적으로 분석하는 인공지능 모델을 구축했다"면서 "적절한 치료 방향을 신속히 결정하는데 활용할 수 있을 것"이라고 밝혔다.

    한편 이번 연구 결과는 국제학술지 ‘이클리니컬메디신(eClinicalMedicine, IF 17.033)’ 최신호에 게재됐다.